5

 ARCUS

 ARCUS}

SHEPHERDS' RIG WIND FARM

Appendix 15.1
ABNORMAL LOAD ROUTE ASSESSMENT

JULY 2018

Prepared By:

Arcus Consultancy Services

$7^{\text {th }}$ Floor
145 West George Street
Glasgow
G2 2HG

$\mathbf{T}+44$ (0)141 2219997 I E info@arcusconsulting.co.uk w www.arcusconsulting.co.uk

Registered in England \& Wales No. 5644976

TABLE OF CONTENTS

1 INTRODUCTION 1
2 METHODOLOGY 1
2.1 Mapping 1
2.2 Site Visit 1
2.3 Delivery Vehicle Specifications 1
2.4 Route to Site and Site Entrance Location 1
2.5 Assumptions 2
3 RESULTS OF ASSESSMENT 2
4 CONCLUSION 6
4.1 Summary 6
4.2 Recommendations for Further Work 6
APPENDIX A - VEHICLE DATA SHEETAPPENDIX B - ROUTE TO SITE
APPENDIX C - SWEPT PATH ANALYSIS DRAWINGS

1 INTRODUCTION

Shepherds Rig Wind Farm is a proposed wind farm located off the B729 in Dumfries \& Galloway. This Abnormal Load Route Assessment (ALRA) provides an assessment of land based routes to the wind farm site for the delivery of wind turbine components.

2 METHODOLOGY

This ALRA is a desk based study which uses publically available Ordinance Survey (OS) mapping to conduct swept path analysis of pinch points on the proposed delivery route. Swept path analysis is conducted in AutoCAD using the Vehicle Tracking software and a bespoke set of delivery vehicles developed for this ALRA.

2.1 Mapping

OS Mastermap was used to conduct swept path analysis along the proposed delivery route. This mapping is two-dimensional; therefore, the assessment only considers the horizontal geometry of pinch points on the route. Topographical surveys may be required in order to undertake an assessment of vertical constraints.

2.2 Site Visit

A site visit and route drive over was undertaken in July 2018 by an Arcus Engineer in order to verify results of an initial swept path analysis. During this drive over, the locations of identified constraints were confirmed in order to verify the accuracy of the OS mapping.

2.3 Delivery Vehicle Specifications

A vehicle data sheet is included in Appendix A. The candidate turbine used during the assessment is a Vestas V117. Dimensions of the blade and corresponding delivery vehicle specifications are provided in the following tables.

Table 2.1: Turbine Blade Data

	Data Used in Assessment
Blade	Length 57.15 m

Table 2.2: Assumed delivery vehicles for Turbine Blade

	Data	Source
Blade Trailer	Vehicle length -55.6 m Blade overhang -6.2 m	Volvo Cab / TSR Trailer

2.4 Route to Site and Site Entrance Location

The port of delivery specified for turbine components is the Port of Ayr. Figure 1, included in Appendix B, indicates the assessed abnormal load route from the Port of Ayr to the site entrance and indicates all of the identified points of constraint (PCs) on this route.
The proposed site entrance location was provided by Infinergy and is indicated on Figure 1, included in Appendix B.

2.5 Assumptions

In order to keep the results of assessment as concise as possible, the following assumptions have been made at each PC:

- During transit, delivery vehicles will be accompanied by an escort vehicle and a police escort if required.
- At all locations where the delivery vehicle occupies the full road width, or is required to contraflow a junction, appropriate traffic management procedures will be implemented by the escort. This will usually involve temporary closure of the road or junction whilst the vehicle passes.
- A detailed traffic management plan will be prepared prior to delivery to inform all relevant stakeholders of road closures and other procedures to be implemented during delivery.

3 RESULTS OF ASSESSMENT

Based on swept path analysis of all PCs identified on the proposed delivery route, outcomes and mitigation requirements have been defined and are summarised in Table 3.1.

ormal pherds	Route Assessment Wind Farm			
Table 3.1: Assessment of Constraints				
Ref	Location	Assessment Outcome	Mitigation	Risk
PC/01	Waggon Road / Allison Street Roundabout, Ayr	Roundabout to be contraflowed. Blade tip to oversail north of Waggon Road and pass within factor of safety of traffic signal. Load to oversail inside bend south of Waggon Road and conflict with pedestrian guardrail and pass within factor of safety of traffic signal. Trailer and blade tip to oversail islands and conflict with plastic bollards and to pass within factor of safety of traffic signals. Vehicle to overrun central reservation on Allison Street and conflict with plastic bollard.	Topographical survey may be required to locate exact position of traffic signals, alternatively dry run could be undertaken to determine if temporary removal of signals will be required. Pedestrian railing to be temporarily removed. Plastic bollards to be temporarily removed. Load bearing surface to be laid in overrun area in central reservation, steel plating and temporary kerb ramps are likely to be sufficient.	Medium
PC/02	Allison Street / Whitletts Road Roundabout, Ayr	Vehicle to overrun central reservation of Allison Street, mapping does not correspond to site observations in this location; raised central island with lighting column not shown on mapping. Blade tip to conflict with lighting column on Allison Street central reservation. Vehicle to overrun Whitletts Road central island and conflict with lighting column.	Load bearing surface to be laid in overrun areas on central reservations, steel plating and kerb ramps are likely to be sufficient. Topographical survey may be required to establish if conflict with central island is likely to occur. Lighting columns to be mounted on demountable supports.	Medium
PC/03	Whitletts Roundabout	Vehicle can navigate PC with no conflict.	No specific mitigation required.	Low
PC/04	Holmston Roundabout	Blade tip to conflict with sign on approach arm island. Blade tip to oversail pedestrian guardrail on outside of roundabout. Load to oversail roundabout central island.	Sign on approach arm island to be mounted on demountable support. Clearance height of blade tip above pedestrian guardrail to be checked.	Low
PC/05	Bankfield Roundabout	Load and blade tip to oversail approach arm and roundabout islands and inside bend to the north of A713. A signpost and lighting column are located nearby to the extent of oversail.	Topographical survey may be required to precisely locate sign and lighting column. If required these should be mounted on demountable supports.	Low

Abnormal Load Route Assessment
Shepherds Rig Wind Farm cleared from all oversail areas.

Mitigation

Ref	Location	Assessment Outcome	Mitigation	
PC/06	Kirn Bridge	Blade tip and middle of trailer to oversail bridge parapets.	Clearance height of blade tip and trailer above bridge parapets to be checked. Structural survey to be undertaken on bridge structure.	Low
PC/07	A713/B729 Junction at Carsphairn	Trailer to overrun inside bend of junction within public land adjacent to Scottish Water facility. Load to oversail inside of right bend beyond junction.	Manual RWS required to negotiate bend. Load bearing surface to be laid in overrun area within public land on inside bend. Vegetation to be cleared from all oversail areas.	Medium
PC/08	B729 Junction at War Memorial	Vehicle to overrun inside bend and conflict with telegraph posts and stone wall within third party land.	Telegraph posts to be relocated outside of overrun and oversail areas. Load bearing surface to be laid in overrun areas in third party land. Stone wall to be relocated.	
PC/09	Bend on B729 over culvert at Dalbonniton Knowe	Load to oversail inside bend above bridge parapet, possibly into third party land.	Clearance height of load above bridge parapet to be checked, site observations would suggest this is unlikely to be an issue. Structural survey to be undertaken on culvert structure. Landownership of oversail area to be established.	
PC/10 Medium				

Page 4

$\begin{aligned} & \text { rmal } \mathrm{L} \\ & \text { herds } \end{aligned}$	Route Assessment Wind Farm			ARCUS
Ref	Location	Assessment Outcome	Mitigation	Risk
PC/13	B729 Bend at Nether Loskie	Vehicle to overrun outside bend on east side of road.	Load bearing surface to be laid in overrun area. Vegetation to be cleared from overrun and oversail areas.	Medium
PC/14	Bend at B729/B7000 Junction	Blade tip to oversail outside bend to south. Vehicle to overrun outside bend to east. Load to oversail inside bend and conflict with sign.	Vegetation to be cleared from oversail areas. Load bearing surface to be laid in overrun area. Third party land may be required subject to verge confirmation. Road sign to be relocated or mounted on demountable supports.	Medium
PC/15	B729 Bend at Muirdrochwood	Oversail and overrun at various locations on inside and outside of series of bends. Inconsistencies noted between mapping and on site observations.	Vegetation clearance may be required to accomodate vehicle and blade tip oversail. Overrun areas to be constructed. Third party land may be required subject to verge confirmation. Topographical survey may be required.	Medium

4 CONCLUSION

4.1 Summary

The delivery route was assessed for the candidate wind turbine blade vehicle. Fifteen pinch points were identified between the Port of Ayr and the start of the site entrance. Swept path analysis was conducted at each pinch point and details of required improvement works have are presented in the drawings. There are a number of junctions where improvement works will be required to permit delivery.

4.2 Recommendations for Further Work

Structural surveys may need to be undertaken along the route in order to establish weight limits. An abnormal indivisible loads application should be submitted to the relevant authority which will initiate consultations with all relevant parties and identify areas where further review is required.

APPENDIX A - VEHICLE DATA SHEET

Arcus 3 Axle Platform Trailer 57．15m Blade
Overall Length $\quad 61.730 \mathrm{~m}$
$\begin{array}{ll}\text { Overall Width } & 4.000 \mathrm{~m} \\ \text { Overall Body Height } & 3.407 \mathrm{~m}\end{array}$
$\begin{array}{ll}\text { Min Body Ground Clearance } & 0.331 \mathrm{~m} \\ \text { Max Track Width } & 2.550 \mathrm{~m}\end{array}$
$\begin{array}{ll}\text { Max Track Width } & 2.550 \mathrm{~m} \\ \text { Lock to lock time } & 6.00 \mathrm{~s} \\ \text { Kerb to Kerb Turning Radius } & 6.600 \mathrm{~m}\end{array}$

Purpose of issue
DOR INFORMATION
Designed

	KOR INFRMATION	
Designed	Orawn	Checked
KL	KL	TAT
Arcus Internal Project No．	Date	

31／07／18
2966
Scale＠A3
$1: 250$

APPENDIX B - ROUTE TO SITE
$\begin{array}{ll}\star & \text { Site Entrance Location } \\ \square & \text { Site Boundary } \\ \square & \text { Abnormal Load Route } \\ 0 & \text { Low Risk Pinch Point } \\ 0 & \text { Medium Risk Pinch Point } \\ 0 & \text { High Risk Pinch Point }\end{array}$

$\\|^{\frac{\varepsilon}{8}}$		

Figure 1: Pinch Point Location

APPENDIX C - SWEPT PATH ANALYSIS DRAWINGS

	AUTOMATIC REAR WHEEL STEERING USED UNLESS OTHERWISE INDICATED. ANALYSIS HAS NOT CONSIDERED VERTICAL GROUND CLEARANCE OF THE VEHICLE AND LOAD.
	Further investigation works will be required in order to identif the IMPROVEMENT WORKS REQURED INCLUDING BUT NOT LMMITED TO CARRIAGEWAY WIDENING EARTHWORKS, DRAINAGE, SERVICES, PEDESTRIAN FACIITIIES AND TRAFFIC Manct
	ANALYSISIS BASED O 5 57.15m Elad delver vericle
	ANALYSIS BASED ON OS MASTR RMAP. We
	A 0.75 Fm FACTOR OF SAFETY INDICATED OUTSILED OVEERIIN TO INOICATE THE AREA WHICH SHOULD BE ALLOWED THE EXTENT OF VEHICLE SWEPT PATH, THIS IS TO PROVIDE A AACTOR OFF SAETY AND

disivaroydl:d әسen әu

